#### UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE DESENVOLVIMENTO INSTITUCIONAL E DE RECURSOS HUMANOS CENTRO DE SELEÇÃO

# CONCURSO PÚBLICO PARA PROVIMENTO DOS CARGOS DO QUADRO DE PESSOAL TÉCNICO-ADMINISTRATIVO EM EDUCAÇÃO DA UFG/2015

O Centro de Seleção da Universidade Federal de Goiás divulga as respostas esperadas oficiais da prova Teórico-Prática com abordagem discursiva do cargo de **TÉCNICO EM TELECOMUNICAÇÕES**. Essas respostas foram utilizadas como referência no processo de correção. Foram também consideradas corretas outras respostas que se encaixaram no conjunto de ideias que corresponderam às expectativas quanto à abrangência e à abordagem do conhecimento no que se refere à competência e/ou habilidades na utilização de conceitos e/ou técnicas específicas. Respostas parciais também foram aceitas, contudo, a pontuação a elas atribuída consideraram os diferentes níveis de acerto, quando for o caso.

## **RESPOSTAS ESPERADAS**

- Após o circuito atingir a estabilidade, o capacitor C1 estará carregado. Desta forma, não haverá fluxo de corrente no capacitor C1 e também no resistor R4.
- Como o diodo D1 é ideal, ele não provocará nenhum tipo de queda de tensão.
- A resistência equivalente entre R2 e R3 será de  $R_{eq}$  = 5K $\Omega$ .

Assim, a corrente em R1 será:

$$i_{r1} = (F/(R1 + R_{eq}) = (10V/(5K\Omega + 5K\Omega)) = 1x10^{1}/1x10^{4} = 1x10^{-3} A = 1mA$$

Então a tensão em R1 será: U<sub>r1</sub>=5x10<sup>3</sup>x1x10<sup>-3</sup>= 5V

Da mesma forma  $U_{r2}=U_{r3}$ , pois a corrente se dividirá exatamente na metade, visto que os dois resistores, R2 e R3, possuem resistências iguais. Então,  $U_{r2}=U_{r3}=(1x10^{-3}A/2)\ x$   $10*10^{3}\Omega=5V$ .

Finalmente, a corrente em D1 é dada por  $i_{D1}$ = (1x10<sup>-3</sup>A/2) =0,5mA

Logo, as repostas solicitadas são:

- a) Corrente em D1 = 0.5 mA
- b) Tensão em R1, R2 e em R3 é igual a 5V. E a tensão em R4 é igual a 0V

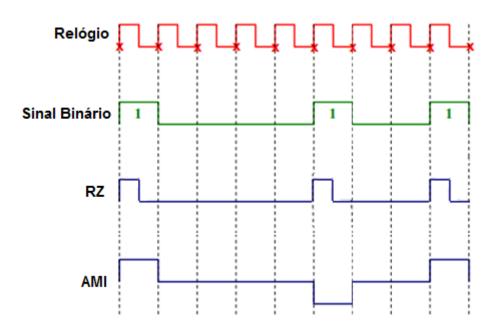
(10 pontos)

#### UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE DESENVOLVIMENTO INSTITUCIONAL E DE RECURSOS HUMANOS CENTRO DE SELEÇÃO

#### Questão 02

- a) Vários fatores motivam a mudança de versão do protocolo TCP/IP, mas quatro aspectos podem ser enumerados como importantes: as falhas de segurança da versão 4, o esgotamento do número de endereços disponíveis, visto que os endereços são de 32 bits, o controle de qualidade nas transmissões e a classificação da natureza das mensagens.
- b) Algumas das principais diferenças entre as duas versões de protocolos são descritas na tabela abaixo:

| IPV4                                                                                                       | IPV6                                                                                                      |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Endereço de 32bits                                                                                         | Endereço de 128bits                                                                                       |
| Suporte opcional de IPSec                                                                                  | Suporte obrigatório de IPSec                                                                              |
| Nenhuma referência a capacidade de QoS (Quality of Service)                                                | Introduz capacidades de QoS utilizando para isso o campo Flow Label                                       |
| Processo de fragmentação realizada pelo router                                                             | A fragmentação deixa de ser realizada pelos routers e passa a ser processada pelos <i>hosts</i> emissores |
| O cabeçalho inclui os campos de opção                                                                      | Todos os campos de opção foram mudados para dentro do campo extension header                              |
| O Adress Resolution Protocol (ARP), utiliza requisitos do tipo Broadcast                                   | O ARP foi abandonado, sendo substituídos pelas mensagens <i>Neibhbor Discovery</i>                        |
| Suporta pacotes de 576 bytes, passiveis de serem fragmentados                                              | Suporta pacotes de 1280 bytes, sem fragmenta-<br>ção                                                      |
| O endereço tem de ser configurado manualmente                                                              | Adição de funcionalidades de autoconfiguração                                                             |
| Os Endereços de <i>Broadcast</i> são utilizados para enviar tráfego para todos os <i>hosts</i> de uma rede | Deixa de existir o endereço de <i>Broadcast</i> , para utilizar endereços <i>multicast</i>                |
| Internet Resolution Management Protocol (IGMP) é utilizado para gerir relações locais de sub-redes         | O IGMP fio substituído por mensagens <i>Multcast Listner Discovery</i>                                    |


c) A afirmação de que o IPv6 é um protocolo mais seguro vem do fato de ele possuir suporte nativo ao IPSec. Por isso, pode-se pensar que todo o tráfego v6 sempre é criptografado automaticamente sem nenhuma intervenção ou configuração do administrador, o que não é verdade. O fato de IPSec estar embutido nos dispositivos (suporte nativo) não quer dizer que a solução de segurança seja autoconfigurada. Ao contrário, as principais soluções de segurança, a exemplo de autenticação e criptografia, deverão ser manualmente configuradas pelo administrador, de maneira bastante similar ao que já é feito atualmente com o IPv4. Por ser mais recente, realmente o IPv6 teve a oportunidade de corrigir várias vulnerabilidades, no entanto, é equivocado afirmar categoricamente que o IPv6 é mais seguro do que o IPv4. Pode-se dizer que o IPv6 tem potencial para ser mais seguro do que o IPv4. O protocolo IPv6 possui um Flow Label (etiqueta de controle de fluxo) para priorizar a entrega de pacotes. Isso permite que os hosts se comuniquem utilizando o conceito de QoS para entrega dos pacotes, tornando alguns serviços mais funcionais [24]. O campo Controle de Fluxo permitirá que políticas de QoS sejam aplicadas sem a necessidade de verificação a fundo das camadas superiores do pacote IPv6 para que sejam definidas e implementadas.

(20 pontos)

### UNIVERSIDADE FEDERAL DE GOIÁS PRÓ-REITORIA DE DESENVOLVIMENTO INSTITUCIONAL E DE RECURSOS HUMANOS CENTRO DE SELEÇÃO

| Questão 03 |  |
|------------|--|
|------------|--|

a)



b) Na técnica de codificação RZ, o número de transições aumenta, facilitando a recuperação de relógio pelo lado do receptor. Porém, longas sequências de "zeros" continuam com a componente DC indesejável. A técnica de codificação AMI elimina completamente a componente DC provendo maior largura de banda, facilitando a extração do "clock" (relógio) no lado receptor da comunicação.

(20 pontos)